• Course Delivery
    online
  • Total Credits
    180
  • Tuition
    £15,000
  • Duration
    3 Years

ADVANCE YOUR CAREER WITH DATA ANALYTICS

While the amount of data being produced is proliferating at a staggering rate, the skills to extract information and the value we receive from it are both relatively scarce. If you are looking to start a career in data science, or even further your current career, our Online Data Analytics MSc will provide you with vital skills required to develop your data handling expertise. You will gain a firm grounding in the principles of learning from data sets, whilst at the same time learning how to handle, visualise and model data to benefit your organisation. 

The Statistics Group at the University of Glasgow is internationally renowned for its research excellence. Students are able to benefit from this by learning from academics whose expertise covers a range of topics from biostatistics and statistical genetics to environmental statistics, statistical methodology and modelling.

We will help you to analyse the true capacity of huge datasets, which will help you to realise your true potential while making you in demand in the modern workplace. Statistical analysis and data mining are currently ranked the second most in-demand hard skills (LinkedIn, 2018). 

Designed for part time study, this programme allows you to gain an MSc degree from a leading university while you are still in full-time employment. Plus, from day one you can start to put your new knowledge to the test at work. You won't have to wait until you've graduated to make a real difference in the workplace. 

A faster study route, which lets you complete the programme in two years, is also available. 

Our students come from a variety of  sectors including finance, the pharmaceutical industry, banking and government statistical services amongst others.

You will have the freedom to work at your own pace and access to a wide range of learning tools including rich interactive reading material, tutor-led videos and computer-led programming sessions. 


PROGRAMME OUTCOMES

  • Demonstrate thorough understanding of the concepts, principles, theories and methods of probability, statistics and machine learning
  • Identify links between different statistical concepts and methods in depth
  • Apply statistical methods to analyse and model data from a variety of contexts
  • Critique different approaches to modelling data in a given context and critically appraise and synthesise the results obtained from different approaches
  • Design, develop, use and critically evaluate software for handling and analysing data
  • Implement analytical methods, obtaining arithmetically correct results
  • Interpret graphical and numerical information and the results of statistical analyses in a valid manner and with reference to the substantive problem being investigated
  • Use ICT facilities, including word-processing, spreadsheet and database packages, as well as statistical software packages and software development tools
  • Design and develop software to perform data management, data extraction, statistical analyses and, as far as possible, automate these, using different tools and programming languages
  • Present the results of a statistical analysis in clear oral and written reports

CAREER OUTLOOK

There is a massive shortage of data-analytical skills in the workforce. Statistical analysis and data mining is ranked 2nd in the Top 10 Most In-Demand Hard Skills 2018 by LinkedIn.

This programme offers a multitude of career opportunities and boosts to student career trajectories. 


Courses

This flexible part-time programme is completed over three years. In the first two years, you will take two courses each trimester. In the third year, you will work on a project and Dissertation.


Programme alteration or discontinuation
The University of Glasgow endeavours to run all programmes as advertised. In exceptional circumstances, however, the University may withdraw or alter a programme. For more information, please see: Student Contract

Compulsory
  • Data Analytics Project and Dissertation60 Credits

    At the end of the programme you will complete a project, giving you the opportunity to put the skills you have acquired throughout the programme into practice. During the project you will solve a real-world data analytics problem using state-of-the-art data science methods.

  • STATS5066Data Management and Analytics Using SAS10 Credits

    An in-depth introduction to the statistical software package SAS, including the use of Structured Query Language (SQL). This course covers all the features required for SAS certification as a Certified SAS Base Programmer and a Certified SAS Statistical Business Analyst.

  • STATS5073Advanced Predictive Models10 Credits

    Looking at models which can account for a non-normal distribution of the response and/or the fact that data is not independent, but correlated. You will gain an overview of different generalisations of linear regression models and become acquainted with the theory of exponential families. You’ll also be introduced to generalised linear models and the concept of a time series.

  • STATS5074Data Mining and Machine Learning 1: Supervised and Unsupervised Learning10 Credits

    An introduction to machine learning methods and modern data-mining techniques, with an emphasis on practical issues and applications. You’ll be introduced to different methods for dimension reduction and clustering (unsupervised learning), a range of classification methods beyond those covered in the Predictive Modelling course. You’ll also learn about neural networks, deep learning, kernel methods, support vector machines and Gaussian processes.

  • STATS5075Learning from Data10 Credits

    This course will introduce you to different approaches to learning from data, with a focus on interval estimation, hypothesis testing and frequentist and Bayesian model-based inference. You will then learn how to implement these statistical methods using R.

  • STATS5076Predictive Modelling10 Credits

    This course will introduce you to predictive modelling using multiple linear regression as a showcase. It will present some of the distributional theory underpinning the normal linear models and the associated methods for testing and interval estimation. You will also find out how the design matrix of a linear model can be constructed to accommodate categorical covariates or, through basis expansions, non-linear effects.

  • STATS5077Probability and Stochastic Models10 Credits

    Provides a structured development of probability theory and its use to construct stochastic models. Your learning will place emphasis on the theory of random variables and random vectors to help solve real-life problems. The pace of the course is brisk, as it begins from the assumption that you have little prior exposure to probability yet reaches advanced concepts by the end.

  • STATS5078R Programming10 Credits

    Designed to introduce you to programming in the statistical software environment R. You’ll be introduced to basic concepts and ideas of a statistical computing environment and trained in programming tools which use the R computing environment. The course provides computational skills which will support other courses on the programme and you will learn the fundamental concepts in scientific programming.

  • STATS5079Data Analytics in Business and Industry10 Credits

    The course introduces you to applications of data analytics in business and industry and introduces students to the social, ethical, legal, and professional issues arising in data science. It also delivers experience in the communication and presentation of results.

  • STATS5081Data Mining and Machine Learning 2: Big Data and Unstructured Data10 Credits

    This course will provide you with a grounding in data mining and machine learning methods used in big data scenarios. You will also learn methods for analysing networks and unstructured data, as well as formal methods for social network analysis and quantitative text analysis.

  • STATS5082Data Programming in Python10 Credits

    This course will introduce you to object-oriented programming and Python as a generic programming language and its use for data programming and analytics. You will learn to use Python libraries that are relevant to data analytics such as scikit-learn, NumPy/SciPy and pandas.

  • STATS5083High Performance Computing for Data Analytics10 Credits

    The course focuses on high-performance computing and presents an overview of big data systems. You’ll be introduced to Julia as well as fundamental concepts in high-performance computing with a focus on parallelisation. You’ll also be trained in the efficient implementation of computationally expensive data-analytic methods, and introduced to enterprise-level technology relevant to big data analytics such as Spark, Hadoop or NoSQL databases.

  • STATS5084Uncertainty Assessment and Bayesian Computation10 Credits

    Develops the foundations of modern Bayesian statistics and demonstrates how prior distributions are updated to posterior distributions in simple statistical models. You’ll be introduced to advanced stochastic simulation methods such as Markov-chain Monte Carlo. You’ll also find out how to fit Bayesian models using high-level software for Bayesian hierarchical modelling such as BUGS or STAN.

Admissions Requirements

To be accepted to this programme, you must have:

  1. A first degree equivalent to a UK upper second class honours degree, normally with a substantial mathematics component (at least equivalent to Level-1 courses in Mathematics and Level-2 courses in Calculus and Linear Algebra at the University of Glasgow)
  2. Graduates who only have the equivalent of A-level Mathematics can also be admitted to the programme. However, such candidates are required to work through self-study material provided and complete a pre-sessional course in Elementary Mathematics (scheduled in the two weeks preceding the start of the teaching period of semester 1)
  3. Previous study of Statistics or Computing Science is not required
  4. If English is not your first language, the University sets a minimum English Language proficiency level. This is an IELTS overall score of 6.5 with no sub-test less than 6. If you do not have an IELTS test certificate, equivalent scores in other recognised qualifications may be accepted

To apply to this programme:

You must apply online. As part of your online application, you need to submit the following:

  • A copy (or copies) of your official degree certificate(s), if you have already completed your degree
  • A copy (or copies) of your official academic transcript(s), showing full details of subjects studied and grades/marks obtained
  • Official English translations of the certificate(s) and transcript(s)
  • One reference letter on headed paper
  • Evidence of your English Language ability (if your first language is not English)
  • Any additional documents required for this programme (see Entry requirements for this programme) .

Please check that you meet the entry criteria for this programme before you apply.

You have 42 days to submit your application once you begin the process. You may save and return to your application as many times as you wish to update information, complete sections or upload supporting documents, such as your final transcript or your language test.

Key Dates UK/EU

Application Deadline
Start Date
23 Sep 2019
23 Sep 2019

Tuition & Fees

  • Home/EU: £15,000*
  • International: £15,000*

*Total cost, incremental payment schedule available. Fee information is subject to change and is for guidance only.

How much does the programme cost?

Part-time fees 1,667 per 20 credits

Can I get help to fund my studies?
You may be eligible for help with the cost of the programme.


What it's like to study online

100% online for complete flexibility
Our part-time online programmes are ideal if you're working full-time or have family commitments.
Connect to campus from anywhere
All you need for our online programmes is a device with internet access.
Gain a global perspective
As an online student, you'll be part of an international community of academics and learners.
Learn from the experts
Our world-class teaching and research staff will help you realise your potential.
Interact with everyone
Community building and collaborative learning is a key focus of our online programmes.
Access a multitude of resources
Study using a range of materials, including recorded lectures, live seminars, videos, interactive quizzes, journal articles and ebooks.

Want to learn more?

We use cookies to improve your visit to our website. By using this website, you consent to the use of cookies. If you would like to, you can change your cookie preferences at any time.